Packet Reordering Procedure with Ubiquous Communication Systems

Devavarpur Sreenivasarao
M.Tech (CS&E) Student
Vidya Vikas Institute of Technology, Chevella, Hyderabad

Mr. Sasi Kiran Jangala
Associate Professor & HOD – CSE, Vidya Vikas Institute of Technology, Chevella, Hyderabad

Dr. V.S. Giridhar Akula
Principal
Avanth’s Scientific Academy and Research Academy, Hyderabad

ABSTRACT

Satellite links are going to play a vital role in the deployment of ubiquitous broad band systems. Non-Geostationary (NGEO) satellite communication systems are more advantageous than terrestrial satellites. This paper presents an exchange of information on cooperation status among neighboring satellites. The new explicit load balancing scheme is used to avoid congestion and packet drops at the satellite. A TTL based algorithm is used for packet reordering.

Keywords


1. Introduction

Internet plays a vital role in the present day communications. And in specific in wireless networks. Satellites and wireless links with high latency plays an important role for ubiquitous communication in the next generation communication systems. Non – Geostationary satellite communication systems are far better than terrestrial and geostationary counterparts. The ongoing research is going to find out efficient algorithm for congestion control in satellite communications. Future NGEO satellite uses will be focused more on the globe. This is because of geographical or climate constraints. The density variance identified here, along with the highly dynamic feature of NGEO constellations, will yield a scenario where some satellite links are congested while others are decentralized.

2. Materials and Methods

The feature internet will have a large number of very high bandwidth links. For interactive internet applications LEO satellites will be used due to shorter round trip delays. Many LEO satellites constellations include direct inter-satellite links in order to provide communication paths arrange satellites. In the present scenario, a number of LEO, MEO and GEO satellites constellations have been proposed to provide broadband services. With the help of on board processing technologies, satellites are now able to provide full two-way services. The Ka band supports broad band multimedia communications. V-band with 51.4 G.Hz and millimeter wave with 76 G.Hz frequencies will enable scalable mobility and ubiquitous connectivity across the globe, the work proposed by Esaci and Bender considers ISL’s as a variable length and each satellite decides on the neighboring satellite to find the shortest path. Present researchers goals is on the constellations made of multi Non-Geostationary satellites like LEO and GEO. NGEO constellations leads to complex dynamic routing. In [8], a routing strategy proposed to maximize throughput in LEO satellite networks. Recent works propose routing protocols with shortest delays. Network traffic information is controlled either locally or globally from the whole network. In [10], a priority based adaptive minimum-hop routing algorithm is proposed. In [11], a probabilistic routing protocol (PPP) is proposed.

3. Proposed Work

The proposed work proposes that neighboring satellites can exchange information on their present congestion status. This work uses Explicit Load Balancing Technique (ELB). In which a satellite continuously monitors its queue size to determine its state. The change in the state of the satellite is informed to its neighboring satellites, with the help of self state advertisement packet. To avoid congestion, a satellite with heavy traffic requests its neighboring satellites to forward a portion of data via alternative packets set do not involve the satellite. The ELB mechanism uses three parameters to indicate their congestion status and to reduce their data transmission rates. These parameters are queue ratio thresholds and a traffic reduction ratio. This paper finds the effect of receiving on TCP while ELB is in use.

4. Packet Reordering Mechanism

In satellite networks, the packet loss is usually due to corruption, these corrupted packets can be dropped either the routers or in the receiver when the header checksum fails. The most useful packet reordering method is the TCP for persistent reordering. The main idea of this method the detection packet loses through the use of timings instead of duplicate acknowledgements. This method purely follows different rules then the basic TCP (if does not use any modifications at receiving side). The proposed method, the receivers refer to the TTL packet headers. After receiving a packet in order, a TCP receiver immediately sends back a normal ACK to the sender similar to the general how TCP behavior. If the TTL > TTL intact then the receiver interprets the incident as due to changes in the communication path. Acknowledgement packets are hold for a specified time span and hence the throughput degradations because of unnecessary transmission of duplicate ACKs will be prevented.

Packet Reordering Algorithm

1. Begin
2. Start after receiving a packet
3. If packet arrival is intact them
4. Store TTL = TTL intact
5. Reset(Timer)
6. Send back ACK
7. Else
8. Verify next TTL
9. If TTL>TTL$_{intact}$ then
10. Set(Timer)
11. If timer expires then
12. Send duplicate ACK
13. Else
14. Send General ACK
15. End if
16. Else
17. Send duplicate ACK
18. End if
19. End if
20. End

5. Result Analysis

The performance of the ELB scheme is tested using network simulator. In this proposed mechanism, the time out interval to send back “Duplicate ACK” is set to (2L+8ms) (in case of out of order reception packets). General TCP-PR & TCP schemes are used for comparison from the simulations results, it is confirmed that the proposed TCP for packet reordering out performs most packet reordering solutions proposed in recent works.

<table>
<thead>
<tr>
<th>Packet Detouring Ratio</th>
<th>Standard TCP</th>
<th>TCP-PR</th>
<th>Proposed Packet Reordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.3</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
<td>1.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>1.75</td>
<td>0.525</td>
</tr>
<tr>
<td>0.6</td>
<td>0.35</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.4</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
<td>0.5</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.9</td>
<td>0.8</td>
<td>1.25</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 1: Performance evaluations when inter satellite link delay is 20 ms

Graph 1: Graph showing results specified in table 1.

<table>
<thead>
<tr>
<th>Packet Detouring Ratio</th>
<th>Average Good Put in MBPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>0.2</td>
<td>1.4</td>
</tr>
<tr>
<td>0.3</td>
<td>2.3</td>
</tr>
<tr>
<td>0.4</td>
<td>2.2</td>
</tr>
<tr>
<td>0.5</td>
<td>1.7</td>
</tr>
<tr>
<td>0.6</td>
<td>1.6</td>
</tr>
<tr>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>0.8</td>
<td>1.4</td>
</tr>
<tr>
<td>0.9</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 2: Performance Evaluation when inter satellite link delay is 25ms.

Graph 2: Graph showing results specified in table 2.

The proposed reordering mechanism gives much lower good put in case of low values of packet detouring ratio

6. Conclusion

In this paper, we proposed a packet reordering mechanism the TTL based packet reordering results are compared with standard TCP and TCP-PR. Proposed packet reordering algorithm shows much lower good put in case of low values of packet detouring ratio. When the packet detouring ratio is 0.7 & 0.8, the proposed technique out performs the TCP-PR. When the inter satellite link delay values are high, then the proposed technique obtained good performance. Simulation results shows better performance of ELB scheme in avoiding congestion, increasing throughput and reducing queue lengths.

7. References


TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009


8. Author’s Profile

Mr Devavarapu Sreenivasa Rao is presently pursuing M.Tech (CS&F) at Vidya Vikas Institute of Technology, Chevella, Hyderabad. He has 14 years of teaching experience and published 6 papers in International Journals. His areas of interest include network security, digital image processing and fuzzy logic.

Mr Jangala Shasi Kiran is presently working as Vice Principal, associate Professor and HOD of CSE at Vidya Vikas Institute of Technology, Hyderabad. He has published many Papers in National and International Journals.

Dr V S Giridhar Akula is presently working as Professor and Principal in Avanthi’s Scientific Technological and Research Academy, Hyderabad. He received B.E, M.Tech and Ph.D degrees in Computer Science and Engineering from JNTUA. Dr Giridhar wrote 06 text books and published 32 papers in many national and international journals. He is acting as an editor and reviewer for many national and international journals. His areas of interest include Digital Image Processing, Computer Networks, Computer Graphics and Artificial Intelligence.