Pipelined Sms4 Cipher Design for Fast Encryption Using Twisted BDD S-Box Architecture

Babu $\mathbf{M}^{\# 1}$ Mukuntharaj $\mathbf{C}^{\# 2}$ Saranya $\mathbf{S}^{\text {\#3 }}$

Assistant Professor,PSRR College of Engineering for Women,Sivaksi ${ }^{\# 1,2}$
Programmer, TATA Consultancy Services, Chennai ${ }^{\# 3}$

Abstract

In this current fast moving world, getting the information faster is more important. My project makes it happen. SMS4 cipher based on Pipelined Twisted BDD (Binary Decision Diagram) S-box architecture can convert the plain text into cipher text as fast as other S-box architecture. SMS4 is a 128-bit block cipher used in the WAPI standard for protecting data packets in WLAN. In this project S-box architecture using Look-Up Table (LUT), Twisted BDD and Pipelined Twisted BDD were compared and proved that Encryption using S-box Pipelined Twisted BDD architecture is about 3.5-4 times faster than other S box architectures. SMS4 is a symmetric key cipher, in which both the sender and the receiver use a single key for encryption and decryption. The decryption procedure of SMS4 can be done in the same way as the encryption procedure by reversing the order of the round keys.

Keywords-SMS4 cipher; S-box; Twisted BDD architecture; Pipelined Twisted BDD architecture

I INTRODUCTION

In 2006, the Office of State Commercial Cipher Administration of China (OSCCA) released the specification of the SMS4 block cipher, which was employed in the Wide Authentication and Privacy Infrastructure (WAPI) standard to provide the data confidentiality in wireless networks. The Architectures of LUT S-box and Twisted BDD S-box were compared in this paper. The fast Encryption of plain text to cypher text is done with Twisted BDD S-box architecture.
S box:
The S (substitution) box takes in 8 bits and outputs 8 bits. It is written Sbox (:).

Fundamental Operations

The two fundamental operations used by this algorithm are:
\wedge the bitwise XOR of two 32-bit vectors, <<< i the circular shift of a 32 -bit word, with i bits shifted left.

Input and output blocks, and key
The 128 -bit input block consists of four 32 -bit words $\mathrm{MK}=\left(\mathrm{MK}_{0}, \mathrm{MK}_{1}, \mathrm{MK}_{2}, \mathrm{MK}_{3}\right)$ or $\mathrm{MK}_{\mathrm{i}}(\mathrm{i}=0,1,2$, 3). The round key schedule, derived from the encryption key, is represented by $(\mathrm{rk} 0, \mathrm{rk} 1, \ldots, \mathrm{rk} 31)$, where each $\mathrm{rk}_{\mathrm{i}}(\mathrm{i}=0$, $1, \ldots ., 31$) is 32 bits long. The 128 -bit output block consists of four 32-bit words FK = (FK0, FK1, FK2, FK3). For decryption, the round key schedule is represented by CK $=(\mathrm{CK} 0, \mathrm{CK} 1, \ldots, \mathrm{CK} 31)$ or
$\mathrm{FK}_{\mathrm{i}}(\mathrm{i}=0, \ldots, 3), \mathrm{CK}_{\mathrm{i}}(\mathrm{i}=0, \ldots ., 31)$.

The round function F

This algorithm uses a nonlinear substitution structure, encrypting 32 bits at a time. This is called a oneround exchange. Consider a one-round-substitution:

Let the 128 -bit input block be the four 32 -bit elements (X_{0}, $\left.X_{1}, X_{2}, X_{3}\right) \in\left(Z^{32}{ }_{2}\right)^{4}$, with $r k \in Z^{32}{ }_{2}$, then F is given by $F\left(X_{0}\right.$, $\left.\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{rk}\right)=\mathrm{X}_{0} \wedge \mathrm{~T}\left(\mathrm{X}_{1} \wedge \mathrm{X}_{2} \wedge \mathrm{X}_{3} \wedge \mathrm{rk}\right)$

Mixer-substitution T

T is a substitution that generates 32 bits from 32 bits $\mathrm{T}: \mathrm{Z}^{32}{ }_{2} \quad \mathrm{Z}^{32}{ }_{2}$. This substitution is a reversible process. It consists of a non-linear substitution, τ, and a linear substitution L ,
i.e., $T(:)=L(\tau(:))$.

Non-linear substitution τ

τ applies 4 S-boxes in parallel.
Let a 32 -bit input word be $A=\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in\left(G F\left(2^{8}\right)\right)^{4}$, where each a_{i} is an 8 -bit character. Let the 32 -bit output word be $B=\left(b_{0}, b_{1}, b_{2}, b_{3}\right) \in\left(G F\left(2^{8}\right)\right)^{4}$, given by $B=\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ $=\tau(A)=\left(\operatorname{Sbox}\left(a_{0}\right), \operatorname{Sbox}\left(a_{1}\right), \operatorname{Sbox}\left(a_{2}\right), \operatorname{Sbox}\left(a_{3}\right)\right)$

Linear substitution L

$\mathrm{B} \in \mathrm{Z}^{32}{ }_{2}$, the 32 -bit output word of the non-linear substitution τ will be the input word of the linear substitution L. Let $\mathrm{C} \in \mathrm{Z}^{32}{ }_{2}$ be the 32 -bit output word generated by L . Then $\mathrm{C}=\mathrm{L}(\mathrm{B})=\mathrm{B}^{\wedge}(\mathrm{B} \lll 2)^{\wedge}(\mathrm{B} \lll 10)^{\wedge}(\mathrm{B} \lll 18)^{\wedge}$ ($\mathrm{B} \lll 24$)

II SMS4 BLOCK CIPHER

SMS4 is a Chinese block cipher standard, mandated for use in protecting wireless net-works. The input, output, and key of SMS4 are each 128 bits. The algorithm has 32 rounds, each of which modifies one of the four 32-bit words that make up the block by x-oring it with a keyed function of the other three words. Encryption and decryption have the same structure except that the round key schedule for decryption is the reverse of the round key schedule for encryption. SMS4 is a 32 -round iterative algorithm, and both the data block and the key size are fixed to 128 bits. The encryption flow of the SMS4 cipher is shown below

Fig. 1 SMS4 Cipher Encryption process

SMS4 Encryption Algorithm

Let $X=\left(X_{0}, X_{1}, X_{2}, X_{3}\right) \in\left(G F\left(2^{32}\right)\right)^{4}$ be the plaintext and $Y=\left(Y_{0}, Y_{1}, Y_{2}, Y_{3}\right) \in\left(G F\left(2^{32}\right)\right)^{4}$ be the cipher text. Let denoted by $r k_{i} \in G F\left(2^{32}\right)$ the round keys and by $\left(X_{i}, X_{i+1}, X_{i+2}\right.$, $\left.X_{i+3}\right)$ the $(i+1)$-th round inputs, $i \in\{0,1, \ldots, 31\}$. Then the SMS4 scheme can be written as

$$
\begin{aligned}
X_{i+4} & =F\left(X_{i}, X_{i+1}, X_{i+2}, X_{i+3}, r k_{i}\right) \\
& =X_{i} \wedge T\left(X_{i+1}^{\wedge} X_{i+2} \wedge X_{i+3} \wedge r k_{i}\right)
\end{aligned}
$$

And $\left(Y_{0}, Y_{1}, Y_{2}, Y_{3}\right)=\left(X_{35}, X_{34}, X_{33}, X_{32}\right)$ where $i \in\{0,1, \ldots, 31\}, F$ is the round function and T is the composite transformation. The transformation $T: G F(232) \rightarrow G F(232)$ is composed of the nonlinear transformation τ and the linear transformation $L: T()=.L(\tau()$.$) The transformation \tau$ includes four 8-bit nonlinear S-boxes in parallel. Let denoted by $A=\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in\left(G F\left(2^{8}\right)\right)^{4}$ the input of and τ by $B=$ $\left(b_{0}, b_{1}, b_{2}, b_{3}\right) \in\left(G F\left(2^{8}\right)\right)^{4}$ the output. Then can be defined as

$$
\begin{aligned}
B & =\left(b_{0}, b_{1}, b_{2}, b_{3}\right)=\tau(A) \\
& =\left(\operatorname{Sbox}\left(a_{0}\right), \operatorname{Sbox}\left(a_{1}\right), \operatorname{Sbox}\left(a_{2}\right), \operatorname{Sbox}\left(a_{3}\right)\right)
\end{aligned}
$$

where $\operatorname{Sbox}($.$) is the \mathrm{S}$-box byte substitution.
The output of τ, B, is also the input of the linear transformation L. Let denoted by $C \in G F(232)$ the output of L. Then L can be defined as

$$
\begin{gathered}
\mathrm{C}=\mathrm{L}(\mathrm{~B})=\mathrm{B}^{\wedge}(\mathrm{B} \lll 2)^{\wedge}(\mathrm{B} \lll 10)^{\wedge}(\mathrm{B} \lll 18)^{\wedge} \\
(\mathrm{B} \lll 24)
\end{gathered}
$$

where << i denotes a 32 -bit cyclic left shift by i positions. SMS4 is a symmetric key cipher, in which both the sender and the receiver use a single key for encryption and decryption. The decryption procedure of SMS4 can be done in the same way as the encryption procedure by reversing the order of the round keys.

III Key Schedule

The key schedule process of SMS4 cipher has the same structure as that in the encryption process except for L function. Let $M K=\left(M K_{0}, M K_{1}, M K_{2}, M K_{3}\right) \in\left(G F\left(2^{32}\right)\right)^{4}$ denote the cipher key, $r k_{i} \in G F\left(2^{32}\right), i \in\{0,1, \ldots, 31\}$ denote the round keys, and $K_{i} \in G F\left(2^{32}\right), i \in\{0,1, \ldots, 35\}$. Then key schedule algorithm is defined as
$\left(\mathrm{K}_{0}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}\right)=\left(\mathrm{MK}_{0} \wedge \mathrm{FK}_{0}, \mathrm{MK}_{1} \wedge \mathrm{FK}_{1}, \mathrm{MK}_{2}{ }^{\wedge} \quad \mathrm{FK}_{2}, \mathrm{MK}_{3} \wedge \mathrm{FK}_{3}\right)$ and
$\mathrm{rk}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}+4}=\mathrm{K}_{\mathrm{i}} \wedge \mathrm{T}^{\prime}\left(\mathrm{K}_{\mathrm{i}+1}, \mathrm{~K}_{\mathrm{i}+2}, \mathrm{~K}_{\mathrm{i}+3}, \mathrm{CK}_{\mathrm{i}}\right)$
where $F K_{i}, i \in\{0,1,2,3\}$ are system parameters, $C K_{i}, i \in$ $\{0,1,2,3\}$ are key constants, and T^{\prime} is a transformation similar to T in the encryption process. The only difference between T and T^{\prime} is the linear transformation. Instead of L, the following transformation L^{\prime} is used in T^{\prime} :
$L^{\prime}(\mathrm{B})=\mathrm{B}^{\wedge}(\mathrm{B} \lll 13)^{\wedge}(\mathrm{B} \lll 23)$
The system parameters $F K_{i}$ are defined in hexadecimal as
$F K_{0}=0 \mathrm{xa} 3 \mathrm{~b} 1 \mathrm{bac} 6, F K_{1}=0 \times 56 \mathrm{AA} 3350$
$F K_{2}=0 \times 677 \mathrm{D} 9197, F K_{3}=0 \times B 27022 \mathrm{DC}$
The key constants $C K_{i}=\left(c k_{i, 0}, c k_{i, 1}, c k_{i, 2}, c k_{i, 3}\right) \in\left(G F\left(2^{8}\right)\right)^{4}$ can be computed as follows:

$$
c k_{i, j}=(4 * i+j) * 7(\bmod 256)
$$

where $i \in\{0,1, \ldots, 31\}$, and $j \in\{0,1,2,3\}$.

IV S - box

The algebraic structure of the S-box can be described as $\quad \operatorname{Sbox}(a)=I\left(a . \mathbf{A}_{1}+C_{1}\right) \mathbf{A}_{\mathbf{2}}+C_{2}$ where I (.) is the patched inversion over $G F\left(2^{8}\right)$, the matrices $\mathbf{A}_{1}, \mathbf{A}_{2} \in$ $G L(8,2)$, and the vectors $C_{1}, C_{2} \in G F(2)^{8}$. The cyclic matrices and the row vectors in:

$$
\mathbf{A}_{1}=\mathbf{A}_{2}=\left(\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

$C 1=C 2=(1,1,0,0,1,0,1,1)$
The irreducible polynomial is

$$
f(x)=x^{8}+\mathrm{x}^{7}+\mathrm{x}^{6}+\mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{2}+1
$$

	01	2	4	5			8				B	C	D	E
	D6 90 E	E9		E1	3.	B		B	61		C2	28	FB	C 05
	2B 67	9A 7		BE	04						26	498	86	
	9 C 42	50 F	9	EF	98							D		
	E4 B3	A	C	08	E8	95	80		DF		FA	75		
	4707	A7 F	F	73	17		83		9		19	E6		
	68 6B		7	64	D	8B	F8				A	705	56	
	1E 24		6	58							B		21	887
	D4 00	46	9F	D3	27									
	EA B	8A D	4											
	EO			34										
	1D F6 E	E2	8	66										
	D5	37		FD			0							
	BD 1B													
		318												
	8969													

$$
\text { Table. } 1 \text { SMS4 S-box Look-Up Table }
$$

Simulation result of Encryption using LUT S-box Architecture Timing Diagram of key Constant Generation

Timing Diagram of Round Key Generation

Timing diagram of Encryption using LUT S-box Architecture

The encryption using Twisted BDD S-box Architecture is also same as that of the LUT S-box architecture. Only difference is the structure of transformation box τ.

Fig. 2 Twisted BDD Architecture

Fig. 3 Speedup by parallel decoding of selector control signal

Fig. 4 Twisted BDD S-Box Architecture with m=0

Fig. 5 Twisted BDD S-Box Architecture with m=1

Fig. 6 Twisted BDD S-Box Architecture with m=2

Fig. 7 Twisted BDD S-Box Architecture with m=3

Fig. 8 Twisted BDD S-Box Architecture with m=4

Fig. 8 Twisted BDD S-Box Architecture with m=4

Simulation Result of Encryption using Twisted BDD S-box Architecture

Pipelining is the process of adding delay element on the flow of signal path. This will improve the speed of the circuit. Thereby we can achieve better performance. D-FF is used as delay element in this circuitry.

Fig. 9 Pipelined SMS4 Cipher Encryption process

Simulation Result of Encryption using Twisted BDD S-box Architecture

V Performance Comparison

ARCHITECTURE	MEMORY NEEDED	DELAY
S-Box LUT	1.03 Gb	6600 ns
Twisted BDD with $\mathrm{m}=0$	4.31 Gb	3350 ns
Twisted BDD with $\mathrm{m}=1$	3.12 Gb	5100 ns
Twisted BDD with $\mathrm{m}=2$	4.26 Gb	3365 ns
Twisted BDD with $\mathrm{m}=3$	4.37 Gb	3300 ns
Twisted BDD with $\mathrm{m}=4$	4.81 Gb	3296 ns
Twisted BDD with $\mathrm{m}=5$	4.37 Gb	3300 ns
Fipelined SMS4 Cipher	6.18 Gb	1698 ns

Table. 2 Performance Comparison

VI CONCLUSION

This paper purely deals about, how fast we can convert the plain text into cipher text. The SMS4 cipher design using LUT S-box architecture, Twisted BDD S-box architecture and using Pipelined Twisted BDD S-box architecture are designed and proved that Encryption using Pipelined Twisted BDD S-box architecture is about 3.5-4 times faster than all other S-box Architecture.

Future work

The Pipelined Twisted BDD architecture improved the operation speed of the S-box circuit. On the other hand, we can find that much of the critical path delay is used by other operations other than S-box, including XORs, multiplexors and setup time required by the technology. So, future works on improving the SMS4 circuit speed can be focused on the fast circuit architecture design of other parts in SMS4 cipher.

REFERENCES

[1] X. Bai, L. Guo, and T. Li, "Differential power analysis attack on SMS4 block cipher," in Proceedings of 4th IEEE International Conference on Circuits and Systems for Communications, ICCSC 2008, Shanghai, China, May 2008, pp. 613-617.
[2] L. Zhang and W. Wu, "Differential fault analysis on SMS4 (in Chinese)," Chinese Journal of Computers, vol. 29, no. 9, pp. 15961602, 2006.
[3] W. Li and D. Gu, "An improved method of differential fault analysis on the SMS4 cryptosystem," in Proceedings of 1st International Symposium on Data, Privacy, and E-Commerce, ISDPE 2007, Chengdu, China, Nov. 2007, pp. 175-180.
[4] S. Morioka and A. Satoh, "A 10-Gbps full-AES crypto design with a twisted BDD S-box architecture," IEEE Trans. VLSI Syst., vol. 12, no. 7, pp. 686-691, Jul. 2004.

