
International Journal of Computers Applications & Information Technology

Vol. 1, No.1, July 2012

7 | P a g e

TASK SCHEDULING WITH GENETIC APPROACH AND
TASK DUPLICATION TECHNIQUE

Rachhpal Singh
 Asstt. Prof., P.G. Department of Computer Science & Applications,

Khalsa College (KCA), City: Amritsar (State-Punjab-INDIA).

E-Mail: rachhpal_kca@yahoo.co.in

ABSTRACT

The basic and prime job in parallel multiprocessor

environment is accurately mapping of tasks and set the

scheduling of different tasks on different processors to

minimize the makespan. Total runtime is time taken time for

all jobs with the individual runtime of tasks and their

communication cost among tasks. In parallel multiprocessor

environment, an optimal scheduling of parallel tasks having

precedence relationship on such system is same as NP-

complete problem. In this paper, the scheduling hindrance is

bringing out the optimal mapping of tasks and their efficiently

possible execution stream on multiprocessor system

configuration. Numbers of alternative solutions and heuristics

techniques are proposed to solve such type of problem. By

applying the GA with task duplication technique enhances the

efficiency of the task scheduling in parallel multiprocessor

environment. Here also by comparing this new approach with

some existing deterministic scheduling techniques for

minimizing inter processor traffic communication will speed

up the scheduling.

.

Keywords:
Task scheduling, Parallel Computing, Genetic Algorithm

(GA), Task duplication Genetic algorithm (TGA).

1. INTRODUCTION
The task scheduling has utmost significance in homogeneous

and heterogeneous multiprocessor parallel computing

environment. The problem of task scheduling on such type of

systems is very crucial and it verify the sequence of processor,

when and on which processor a given task executes. Our major

goal is to minimize the mean task response time (total finish

time or makespan) and meet the deadline at the same time. At

last our final intention in this scheduling is to get the final time

and cost of the execution and that would be minimized and

also all other fundamental constraints are satisfied [1][2][3].

Here in the problem currently originated, the process of

scheduling is static because the finite number of processor,

mapped tasks according to the processor sequence, their

dependencies on tasks and processor, and inter processor

communication cost used for these systems are known in

advanced before going to generate a task schedule[4][5]. Here

it is important to determine the set of finite tasks T and finite

number of processors NOP so that the mapping of every task

to each processor from a set of processors P. In this defined or

created task set every task may communicate with zero or

more other tasks in set with some communication cost value

having positive to negative set of values. So in experiment the

main focus is on four variables during the execution of

scheduling. These are

 Performance factor of homogeneous and non

homogenous processors,

 Mapping of different scheduling tasks on working

processors,

 Sequence and ordering of processors and

 At end variable set the sequence of execution of

tasks under various scheduling criteria like FCFS-

first come first serve, PS-priority scheduling, LS-list

scheduling, GA-genetic algorithm and TA-Task

duplicated concept with genetic approach on

different processors.

Here a powerful tool DAG (Directed Acyclic Graph) can be

taken which represents the execution and communication costs

in the system [1][5]. In this system the task scheduling

problem is taken as NP-complete problem or NP-hard problem

and there are number of heuristic search techniques considered

and only genetic algorithms have attracted much attention as

class of arbitrarily search algorithm for task scheduling in

homogeneous and heterogeneous processor environment [5].

This paper is organized in six sections and rest five are as

follows: Section 2. gives an overview of the problem along

with brief description of the solution methodology. In the

section 3 detailed proposed genetic algorithm explained.

Section 4 describe the concept of task duplication. Section 5

provides the experimental results and performance analysis of

the study. At end in the section 6 conclusion was done.

2. OVERVIEW
A brief review of parallel classification algorithms and

methods based on the characteristics of the tasks to be

scheduled, the parallel environment and the availability of the

information is presented in this section[6][9][11][12][13][14].

Such type of big task is efficiently partitioned into set of small

tasks having appropriate grain size with or without fine grain

based on the technique behind the execution of the tasks on

parallel computing environment and create an abstract model

of the partitioned tasks that can be represented in the form of a

set graph known as DAG (Directed Acyclic Graph) [20]. The

major objective is to analyize the deterministic scheduling

problem in which there exist a set of precedence relations

among the tasks to be scheduled in a sequence. A deterministic

scheduling problem [16] is one in which all information about

the tasks and the relation to each other such as execution time and

precedence relation are known to the scheduling algorithm in

advance and the processor environment is either homogeneous or

non homogeneous[18][19][20]. The homogeneity of processor

generate a set of same type of processor with same processing

speed and heterogenity of processors means that the processors

have different speeds or processing capabilities. So here, a study

has been done regarding the task scheduling problem as a

International Journal of Computers Applications & Information Technology

Vol. 1, No.1, July 2012

8 | P a g e

deterministic on the homogeneous and heterogeneous parallel

multiprocessor environment. The main goal is to minimize the

makespan i.e. total task finish time. Here makespan means it is

execution time plus the waiting time or idle time. Let us

suppose a parallel multiprocessor computing environment

consists of a set of m either homogeneous or hetrogeneous

processor in a sequence and can be defined in the equation as:

 P = {pi: i =1, 2, 3…m}

These all are fully connected with each other via unique and

identical links showing three parallel system in the Figure 1

below. DAG has the parallel application and can be

represented as by the notation DAG = (v,e,w,c), where the

vertices set v consist of n tasks and are represented as:

 v = {vj: j =1, 2, 3…n}

A directed edge set e consist of k edges in directional form and

all are denoted in the equation form as below:

 e = {ek: k =1, 2, 3…r}

Figure 1. A fully connected having three parallel processor

P1,P2,P3

Precedence relationships among tasks is represented in the

above figure according to the above said equation. For any two

tasks ti, ti+1 belongs to task set T with having directed edge ek

(edge from task ti to ti+1) means that task ti+1 cannot be

scheduled until ti has been completed, ti is a predecessor of ti+1

and ti+1 is a successor of ti. So it is common that ti sends a

message whose contents are required by ti+1 to start execution.

The weight of the vertices has a set w weight elements and can be

represented in the equation as below:

 w = {wi,j: i =1, 2, 3…m, j: 1, 2, 3,…n}

It represents the execution duration of the corresponding task and

are varies from processor to processor because of either

homogenous or heterogeneous processor environment. The

elements set c is the communication cost according to the

weights of the edges and can be represented in the equation as

below:

 c = {ck: k =1, 2, 3…r}

Communication of data between the two tasks can be

rpresented by using this strategy i.e. if they are scheduled to

different processors, but in case of if both tasks are scheduled

to the same processor, then the weight associated to the edge

becomes zero or null. There is an example of a complete DAG

as shown in the Figure 2 and it consist of a set of tasks as T:

{tj: j = 1, 2 …t}. Similarly Figure 1 indicates set of processors

P = {pi : i = 1, 2, 3} for three processors and Table 1 show a

matrix of execution time of each task on different processor in

case of of heterogeneous environment every processor works

on different speeds and processing capabilities. It is assumed

that processor p1 is much faster than p2, p3 and so on.

Processor p2 is faster than p3, p4 and so on. (i.e., the order of

speed and processing capabilities can be expressed as

p1>p2> p3 > p4 > p5 …..). As given in Table 1 task t1 takes 4

time units to complete their execution on processor p1 and

takes 9 time units and 10 time units to complete their

execution on processor p9 and p10 respectively. On the

basis of the size of the tasks processed on different

processors, the execution time has been calculated[10][17].

Figure 2: A DAG with task and edges

Table 1: Task execution matrix on three processors

3. PROPOSED GENETIC ALGORITHM
A genetic algorithm is evolutionary heuristics technique starts

with an initial population that evolves through generations and

to reproduce generations depends on its fitness [3, 4]. Here the

fitness of an individual is defined as the difference between its

final execution time and the one of the individuals having the

maximum final time in the population. The best individual

corresponds to the one having the minimum makespan and the

maximum fitness. In the next step, the three genetic operators

that compose a genetic algorithm are studied. The selection

operator allows the algorithm to generate a set of good

individuals after changing the generations. By doing so a set of

good individuals are replicated from the set of given

generation, while some of the bad individuals are deleted.

After this a result of good individual population will be

generated. By considering the three processor and starting

from a population of processor P1, this transformation is

implemented iteratively by generating a new population of

processor P2 of the same size as in the processor P1. Genetic

algorithms are based on the principles that crossing two

individuals can result an offsprings that are better than both

parents and slight mutation of an individual can also generate a

better individual. The crossover takes two individuals of a

population as input and generates two new individuals, by

crossing the parents' characteristics. The offsprings keep some

of the characteristics of the parents. The mutation randomly

International Journal of Computers Applications & Information Technology

Vol. 1, No.1, July 2012

9 | P a g e

transforms an individual that was also randomly chosen. It is

important to notice that the size of the different populations is

same. The structure of the algorithm is a loop composed of a

selection followed by a sequence of crossovers and a sequence

of mutations. After the crossovers, each individual of the new

population is mutated with some (low) probability. This

probability is fixed at the beginning of the execution and

remains constant. The termination condition may be the

number of iterations, execution time, results stability, etc

[3][7][8].

3.1 Initial population
Basic part of the GA is initial population. Initial population is

the first step occurs in solving any application of the popular

Genetic algorithm. In the initial population creation,

requirement of number of processor in multiprocessor

environment, the number of tasks and size of population are

the major parameters. Exactly one copy of each task is used by

the each individual. It means the repetition of task on

individual processor is not allowed and we can arrange them

like length of all individual in an initial population is equal to

number of tasks in the target DAG and during experiment each

task is randomly assigned to the processor. Each individual of

the initial population is generated through a minimum

execution time along with two levels that is b-level (bottom

level) or t-level (top level) precedence resolution to avoid the

problem of same execution time or completion time[1][5].

3.2 Fitness operator function

Fitness operator has the major goal in the task scheduling in

multiprocessor system and it compute the shortest possible

schedule. In other words, the fitness of chromosome is directly

related to length of associated schedule and its sequence. In

the task scheduling environment, various factors like

throughput, turnaround time, and processor utilization etc. can

be considered. The fitness function or fitness operator used for

genetic algorithm for computing the minimum task span or the

shortest possible schedule. For this focus on total finish time

for the required schedule that include execution time and

communication delay time. Fitness function computation

depends upon the two factors. In the first factor is task fitness

and fitness of task which equipped us with the knowledge of

all the tasks which are executed and scheduled in the legal

order. The legal order is the scheduling of a pair of task on

single processor if the pair is independent to each other. The

second factor is processor fitness i.e. fitness of processor

attempt to minimize processing time. With the help of these

two factors of fitness operator possible shorter schedule can be

drawn. In the table 2, a legal order is designed and according

to the legal order the processor P1 start execution from task t1,

whereas in case of illegal order nor a single processor start

their execution from different tasks t4, t3, t5 until task t1

executed. So initiation of illegal task needs some information

from task t1[18][19].

Table 2: arbitrarily assigned tasks to processor

S1 and S2 are the two different schedule on the different set of

processor i.e. for uniprocessor and multiprocessor systems. In

schedule S1 all tasks execute on the processor P (uniprocessor

system) and in S2 schedule tasks are randomly distributed as

according to the legal order on all the processors as execution

time shown in table 1[19].

Schedule S1 (On Uni-processor):

P: t1t2t3t4t5t6t7t8t9

Total finish time = 65, Communication cost = 0

Schedule S2 (On three processor):

P1: t1t4t6t9

P2: t2t3t7

P3: t5t8

Figure 3: Execution Schedule of S2

Execution concept can be shown in the Gantt chart having two

axis, the vertical axes shows the processor side and horizontal

axis shows the time side as shown in the figure 3. As shown in

the figure 3, the waiting and idle time of processors be shown

by the single line and bar with numeric data (above) shows the

starting and finishing time of task and name of task (below).

Total finish time = Execution time + communication Cost

= 43 time unit.

From the above two schedule executions, the schedule scheme

in the uni-processor schedule S1 shows the total finish time

only 65 units time whereas in the case of second schedule S2

with the help of multiprocessor represents the only 43 units

time, which is less comparative to the previous one i.e. the

proper calculation of fitness operator function reduces the total

finish time [20].

3.3 Selection operator

First step in the GA is the implication of selection opertor with

the help of the fitness function. Selection operation is the basic

design of fitness function, so how to design the fitness

function will directly affect the performance of genetic

algorithm. To select the superior and eliminate the inferior,

GA uses the selection operator. According to their fitness

value individual are selected. Once fitness values have been

evaluated for all chromosomes, we can select good

chromosomes through rotating roulette wheel strategy. This

operator generate next generationby selecting best

chromosomes from parents and offspring[2][3][19][20].

3.4 Crossover operator

Crossover operator is second one operator used by the GA for

finding the more good results. It randomly selects two parent

chromosomes and randomly chooses their crossover points,

and mates them to produce two child new chromosomes which

is also called new offspring. In other words chromosomes with

International Journal of Computers Applications & Information Technology

Vol. 1, No.1, July 2012

10 | P a g e

higher values have more chance to be selected. Here one point

crossover and two point crossover operators can be examined

to get the best series of cromosome. First one in the case of

one point crossover, the segments to the right of the crossover

points are exchanged to form two offspring as shown in Figure

4(a). Second one in the case of two point crossover [19][20],

the middle portions of the crossover points are exchanged to

form two offspring as shown in Figure 4(b).

Figure 4(a): One Point Crossover

Figure 4(b): Two Point Crossover

3.5 Mutation operator
The probability of finding the optimal solution is never zero

can be ensured with the help of a new concept known as

mutation. It also acts as a safety net to recover good genetic

material that may be lost through selection and crossover. By

using the concept of partial-gene mutation randomly which

selects a chromosome and changes a randomly selected gene

(Ti , Pi) to (Ti , Pj) for which avail time (Pj) is minimum over

all the processors for task Ti [19]. It is to notify that partial-

gene mutation changes the processor which a task is assigned

to, whereas crossover assigns a set of tasks to, probably,

different processors. In this light, partial-gene mutation was

applied in conjunction with crossover operator[14][19]. With

the help of mutation operator idle time can be reduced. The

various steps of implemetation of the Genetic Algorithm (GA)

in a sequence are as follows:

Step 1. Generate a DAG and read all the node values (i.e. to

create a task execution matrix). Here n is the number of task

and m is the number of processor. Also C is the

communication cost and WT is the waiting time.

Step 2. Let us take some parameters or variables after reading

the complete DAG values. The different parameters are like

population size says p-size, crossover probability as Cp,

mutation probability as Mp and maximum generation value to

be computed during the process is Mgen. Let us take

generation g=0 before computation and maximum generation

Mvalue is also 0.

Step 3. Generate a list of chromosome having its p-size after

selecting the chromosome randomly.

Step 4. Calculate the fitness function or value of each

chromosome. Let it be fc. Also compute the fitness function or

fitness value of each node or task. Let it be fn and it is called

task function or node function. At end compute the fitness

value or fitness function of each processor from the list of

chromosome. Let it be fp and called processor fitness.

Step 5. Perform the crossover swapping or operation on the

chromosome either by using one point crossover or two point

crossover from the available list of chromosome with

probability Cp.

Step 6. Perform the mutation operation or swap mutation

process on chromosome selected with probability Mp.

Step 7. At end apply the last operation of genetic approach

called selection process, i.e. select the size of population

chromosomes as p-size from the parents and offspring for the

next generation.

Step 8. If g=Mgen, then the computed output has the best

solution and stop the processing. Otherwise increment the

generation i.e. g=g+1 and return to step 4 to find next best

solution.

All the above eight steps generate a valid chromosome

generation and gives the best fitness.

4. TASK DUPLICATION
Interprocessor communication is a major hindrance in the task

scheduling and only task duplication technique can avoid it.

To avoid such type of problem, a node often has to wait for

entering communication. If analyze the DAG as shown in

figure 2, note that task t2 and task t3 are put in the waiting

form due to communication from task t1. During this period

both processor p2 and p3 run idle and create a wastage of time.

With the help of task duplication, a communication criteria

can be set up. Here a communication from task t1 is set local

to on each processor as shown in figure 6 of the target system

and tasks t3,task t2 and task t5 can start immediately after task

t1 finishes. The concept of task duplication was fully

explained by the renowned computer scientist in handling the

scheduling approaches by Kruatrachue and Lewis, and Ahmed

and Kwok. With the help of Genetic algorithm and by using

the concept of task duplication, the scheduling criteria can be

finalized easily and can get the minimum makespan. Some

tasks are unnecessarily duplicated during the scheduling

procedure with the help of task duplication[19][20].

5. EXPERIMENTAL RESULTS AND

PERFORMANCE ANALYSIS
A complete experimental Gantt chart with the help of Genetic

algorithm after applying on the given DAG having different

task preference as shown in figure 2 and implication of these

task onto either a set of homogeneous or a set of

International Journal of Computers Applications & Information Technology

Vol. 1, No.1, July 2012

11 | P a g e

heterogeneous multiprocessor system as shown in the figure 1

is shown in figure 5 i.e. the execution of different tasks on

different processors with the help of GA. The major objective

is to reduce the total finish time is fulfilled and note that the

total completion time is obtained by this technique is only 32

time units which is minimum [15][16][18]. So by doing this

experiment, a comparison of results with traditional task

scheduling methods like FCFS and priority scheduling and

new genetic algorithm heuristic with node duplication etc. can

be done. During FCFS policy tasks are assigned to three

different processors are as:

P1: t1t4t7

 P2: t2t5t8

P3: t3t6t9

After the analysis of the Gantt chat i.e. execution diagram of

FCFS like figure 3 having schedule 2, the total completion

time is only 43 time units[19][20]. Priority scheduling

generates a tasks scheduling according to its priority values in

scheduling sequence and so according to their priority value

tasks are assigned to the different processors as shown in the

schedule S3 below:

S3 (Priority scheduling on multiprocessor):

P1: t1t2t6

P2: t3t5t4t8

P3: t9t7

List scheduling (LS) is another scheduling criteria having

minimum start time and generate a schedule S4 as shown

below:

S4 (List Scheduling on multiprocessor system):

P1: t1t2t5t6

P2: t3t7

P3: t4t9t8

This schedule also gives the total completion time only 32

units time. After analysis of execution schedule of priority

scheduling, the total execution completion time is only 43 time

units. Here processors with same priority tasks are arranged in

FCFS manner. After applying the genetic algorithm, then the

best optimal schedule of tasks having schedule S5 is as shown

below:

S5 (GA Scheduling on multiprocessor system):

P1: t1t5t4t8t9

 P2: t2t6

P3: t3t7

After applying the new scheduling criteria Genetic Algorithm,

the execution time can be reduced i.e by using the GA to the

collection tasks, the performance becomes better than other

type of scheduling algorithm. The total finish time of enhanced

GAs scheduler is only 32 time units as shown in execution

graph or Gantt chart as in the figure 5. This Gantt chart shows

that the execution time or completion time or makespan can be

minimized with the help of a new heuristic technique and

Genetic algorithm occurs as the best algorithm as compared to

the previous technique FCFS, LS, Priority etc. [19][20].

Figure 5: Execution schedule of task with GA

Here vertical and horizontal axes description is the same as

explained in the Gantt chart i.e. in the figure 3. Now another

new technique task duplication genetic algorithm (TGA) is

applied and the total finish time or completion time or

execution time or make span of TGA is 26 time units as shown

in the Gantt chart i.e. in the figure 6. With the help of Genetic

algorithm and task duplication technique the optimal schedules

for different tasks on multiprocessor system as shown in the

schedule S6 is below:

S6 (GA with task duplication i.e TGA)

P1: t1t5t4t8t9

 P2: t1t2t6

P3: t1t3t7

Figure 6: Execution schedule of task with Task duplication

Genetic algorithm (TGA)

Performance analysis

Performance analysis is used to get the speed and efficiency of

all the above scheduling algorithms[20].

Speed up (Tsp):

Speed up is defined as the ratio of completion time on

uniprocessor system to completion time of multiprocessor

system.

In case of Task duplication Genetic Algorithm (TGA):

Speed up (Tsp) = 65/34 = 1.9117

Efficiency (Eff.)
Eff.= (Tsp * 100) / n;

where n is the number of processors in the system.

Eff. = (1.9117 * 100) / 3 = 63.8%

In case of Genetic Algorithm (GA):

Tsp = 65 / 43 = 1.5116

Eff. = (1.5116 * 100) / 3 = 50.4%

In case of List Scheduling with start time minimization (LS):

Tsp = 65 / 45 = 1.4444

Eff. = (1.4444 * 100) / 3 = 48.1%

International Journal of Computers Applications & Information Technology

Vol. 1, No.1, July 2012

12 | P a g e

In case of FCFS Scheduler:

Tsp = 65 / 55 = 1.1818

Eff. = (1.1818 * 100) / 3 = 39.3%

In case of Priority Scheduler (PS):

Tsp = 65 / 58 = 1.1206

Eff. = (1.1206 * 100) / 3 = 37.3%

The bar graph representation for the time analysis is as shown

below:

Time Analysis Bar Graph

The bar graph representation for the performance analysis is as

shown below:

Performance Analysis Bar Graph

6. CONCLUSION
After studying and analysing this paper, it is concluded that a

proposal was prepared having a GA with the task duplication

(TGA) based technique for deterministic either a set of

homogeneous or the set of heterogeneous multiprocessor

system which comprises the communication cost in

precedence to minimize the total execution time or completion

time or finish time or makespan . By doing so it improve the

throughput of system. After a complete comparisons it is

noticed that the TGA is the best algorithm or technique as

compared to the previous algorithms or techniques or

criteria’s. Here Task duplication introduces a new concept

that is more computation load into the multiprocessor parallel

system in order to decrease the cost of crucial communication.

Here consideration was done that which task should be

duplicated to reduce the overall time. This technique can be

used for future for enhancing the jobs execution for the

implementation of this proposed TGA method to solve the

problem of some nondeterministic homogeneous or

heterogeneous multiprocessor systems used for real life and

real time execution.

7. REFERENCES
[1] Sara Baase, Allen Van Gelder, “Computer Algorithms”,

Published by Addison Wesley, 2000.

[2] Sartaj Sahni, “Algorithms Analysis and Design”,

Published by Galgotia Publications Pvt. Ltd., New Delhi,

1996.

[3] Anup Kumar, Sub Ramakrishnan, Chinar Deshpande,

Larry Dunning, “IEEE Conference on Parallel

processing”, 1994, Page no.83-87.

[4] Ananth Grama, Georage Karypis, Anshul Gupta, Vipin

Kumar, “Introduction to parallel computing”, Published by

Pearson Education, 2009.

[5] Elnaz Zafarani, Amir Masoud Rahmani, Mohammad Reza

feizi Derakhshi, “IEEE Proceeding 2008, Page No. 248-

251

[6] David E. Goldberg, “Genetics Algorithms in Search

Optimization and machine Learning”, Published by

Pearson Education, 2004, Page No. 60-83.

[7] Mitchell, Melanie, “An Introduction to Genetic

Algorithms”, published Bu MIT Press 199.

[8] Sung-Ho Woo, Sung –Bong Yang, Shin-Dug Kim and

Tack-don Han.”IEEE Trans on Parallel System”, 1997,

Page 301-305

[9] M. Salmani Jelodhar, S.N Fakhraie, S.M Fakhraie, M.N

Ahmadabadi, “IEEE Proceeding”, 1999, Page No. 340-

347.

[10] Man Lin and Laurene Tianruo Yang, “IEEE

Proceeding”, 1999 Page No. 382-387

[11] Yajun Li, Yuhang Yang, Maode Ma, Rongbo Zhu,

“IEEE Proceeding”, 2008.

[12] Michael J Qumn, “Parallel Programming”, Published

by Tata McGraw Hill Education Private Ltd, Page No. 63-

89.

[13] John L Hennessy, David A Pattern, “Computer

Architecture, 3rd Edition”, Published by Morgan

Kaufmann & Elsevier India, Page No. 528-590.

[14] David E Culler, “Parallel Computer Architecture”,

Published by Morgan Kaufmann & Elsevier India.

[15] J P Hayes, “Computer Architecture and Organization”,

Published by McGraw Hill International Edition.

[16] J D Carpinalli, “Computer System Organization &

Architecture”, Published by Pearson Education.

[17] Sung-Ho Woo, Sung-Bong Yang, Shin-Dug Kim, and

tack-Don Han, “IEEE Trans on parallel System”, 1997,

Page 301-305.

[18] M.Salmani Jelodar, S.N.Fakhraie, S.M.fakharie, M.N.

Ahmadabadi, “IEEE Proceeding”, 2006, Page No 340-

347.

[19] K. Kamaljit, C. Amit, Singh Gurvinder, “Heuristics

Based Genetic Algorithm for Scheduling Static Tasks in

Homogeneous Parallel System”, International Journal of

Computer Science and Security (IJCSS), pp. 183 – 198.

[20] Singh J., Singh H., “Efficient Tasks scheduling for

heterogeneous multiprocessor using Genetic algorithm

with Node duplication”, Indian Journal of Computer

Science and Engineering, Vol. 2 No. 3 Jun-Jul 2011, pp.

402-410.

[21] Sharma, Manik, Gurdev Singh, and Harsimran Kaur.

"A Study Of BNP Parallel Task Scheduling Algorithms

Metric's For Distributed Database System." International

Journal of Distributed and Parallel Systems 3.1 (2012):

157.

[22] Sharma, Manik, et al. "A comparative study of static

object oriented metrics." International Journal of

Advancements in Technology 3.1 (2012): 25-34.

